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Motivation 2

Figure 1: FaIRv2.0.0: a generalized impulse
response model for climate uncertainty and
future scenario exploration, Leach et al. (2021)

Figure 2: ClimateBench v1.0: A Benchmark
for Data-Driven Climate Projections,
Watson-Parris et al. (2021)



Motivation 3

Physics-driven emulation

⊕ Robust intepretable physical modelling

	 Poor fit to some ESMs

	 Operates at global level

Data-driven emulation
	 Lack interpretability and robust

physical grounding

⊕ Capture complex non-linear
relationships from observations

⊕ Skilful spatial emulation



A physics-driven backbone: FaIRv2.0.0 (Leach et al., 2021) 4
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Gaussian process temperature response model 6

Solution to the energy balance model

If F(t) ∼ GP(F,K) then T(t) is also a GP with

T(t) ∼ GP

∑
i

mi,
∑
i,j

kij

 (1)

where 
mi(t) =

qi
di

∫ t

0

F (s)e−(t−s)/di ds

kij(t, t
′) =

qiqj
didj

∫ t

0

∫ t′

0

K(s, s′)e−(t−s)/die−(t′−s′)/dj dsds′.

(2)
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Watson-Parris et al. (2021)
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Watson-Parris et al. (2021)



Application: Comparing with baseline GP 10
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Watson-Parris et al. (2021)



Which one is SSP126? 12

Figure 3: 4 draws from our model + the NorESM2-LM SSP126.



SSP emulation: it works! 13

Emulator RMSE ↓ MAE ↓ Bias ↓ Log-likelihood ↑ Calib95

FaIR (physics-driven) 0.22±0.06 0.18±0.05 0.07±0.08 - -
GP (data-driven) 0.20±0.09 0.15±0.06 -0.04±0.11 0.30±0.25 1.0±0.0

FaIRGP (hybrid) 0.16±0.05 0.13±0.04 -0.01±0.07 0.41±0.24 0.94±0.06



Application: Emulating radiative forcing from temperatures 14



Application: Spatial emulation of temperatures 15

Figure 4: Spatial emulation of NorESM2-LM SSP245 outputs. Maps are averaged over 2080-2100 period.



Summary 16

Outlook
I Bayesian version of an energy balance model

I Maintains robustness of the impulse response model

I Gains flexibility with possibility to inform with observations

Advantages of Gaussian process approach

I Principled uncertainty quantification (not sampling based)

I Allows to sample and evaluate likelihoods (analytical densities)

I Can naturally way to account for climate internal variability

Applications

I Spatially-resolved temperatures emulation

I Detection/attribution studies (analytical P(T > T ∗ | scenario))

I Study the climate system (e.g. posterior on forcing)
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Gaussian processes (GPs) 18

I GPs are Bayesian prior over classes of functions (generalisation of Gaussian random
variables to functions)

I A GP f(x) is a stochastic function which is fully characterised by its mean function

m(x) and covariance function K(x, x′).

m(x) = E[f(x)] K(x, x′) = Cov(f(x), f(x′)). (3)

We denote,
f(x) ∼ GP(m,K) (4)
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Thermal response model 20
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F (t) Radiative forcing (Wm-2)
di Response timescale (years)
qi Equilibrium response (KW-1m2)
Si(t) Temperature of ith thermal box (K)

Thermal impulse response model

dSi(t)

dt
=

1

di
(qiF (t)− Si(t)) (5)

with T (t) =
∑

i Si(t).
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