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» Uncertainty in magnitude of forcing due to ACIs comes from:

1. Uncertainty in estimation of pre-industrial forcing
2. Uncertainty in estimation of present day forcing

» Uncertainty in present-day forcing due (in part) to difficulty to
get informative measurements of aerosol at global scale — best
we can do is AOD.

» AOD is a 2D quantity which does not inform about vertical
distribution of aerosols.

» Vertical distribution of aerosols changes magnitude and even sign
of the forcing.

Objective

Try to reconstruct aerosol vertical profiles using AOD




2D Spatial Disaggregation

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set
bags. Malaria incidence rate \{ is per 1000 people. Left, Middle: log(;\;‘), with constant model
(Left), and VBAgg-Obj-Sq (tuned on £7) (Middle). Right: Standard deviation of the posterior v in
@ with VBAgg-Obj-Sq.
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ravtercgion = Aggregateregion {l“at(\fﬁuofg,ri(l (xﬁne-grid)}

» Observations: rate.cyion and Tane-grid

» Goal: Infer rateg,....iq as a function of Zane-grid
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Tcolumn = Aggregatecolumn {boxt} = / bcxt(h) dh
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Which x3p?

S—

» Use simple, readily available predictors such as pressure,
temperature, humidity — reanalysis data.

For example, for a given altitude h we can take

x = (t,lat,lon, P,T,RH) (1)

Objective

Using observations of AOD and vertically-resolved
meteorological predictors, we want to estimate aerosol
extinction profiles.
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An idealized vertical prior
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» Idealized profiles assumed in remote sensing products
bext (h) e /L.
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An idealized vertical prior
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» Idealized profiles assumed in remote sensing products

bext (h) e /L.
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» Rough approximation but captures a key structure: most aerosol
lie in boundary layer (< 2 km)
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Weighting of the ideal prior 10

S—

» Propose to weight the idealized exponential profile with a
positive weight function w(z|h) > 0

p(alh) = w(z|h)e "/ (2)

» Capture finer details of variability putting more mass where
meteorological predictors suggest higher aerosol loading

Expect relationship between z|h and bext(h) to be non-trivial and
highly non-linear = learn the weighting w(x|h)
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v

Lack of knowledge about influence of meteorological variables —
epistemic uncertainty

Reflect this with Bayesian design of w(z|h)

w(z|h) = P(f(x|h)) (3)
f~GP(m, k) (4)
Y >0 (5)

Simple choice ¥ = exp

1 o f describes expressive range of probability distribution over
complex positive functions

Remains interpretable (kernel user-specified determines
covariance and functional smoothness)




Connecting ¢(x|h) to observations

O



Need for an observation model

S—

» We observe AOD 7 — ideally we want exactly 7 = fOH o(z|h) dh

» Unrealistic because observations are likely noisy

13




Need for an observation model

S—

» We observe AOD 7 — ideally we want exactly 7 = fOH o(z|h) dh

» Unrealistic because observations are likely noisy

51 & ———- LogN(ji,é%) 04 /_\\ -== NG
4 [ | i \
g [ | ] / Y
241 M Z03 v "
© b = A\
T v = \
231 & g \
= 1 y =02 "y
¥ b, E] s
] XS £ N
3 S
] N Z ol F L
Sy 2 B
~ / h
Bao y "
L e T e — 0.0 =
00 02 04 06 08 10 12 -6 —4 -2 0 2
7500

logTson

13




Need for an observation model
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» We observe AOD 7 — ideally we want exactly 7 = fOH o(z|h) dh

» Unrealistic because observations are likely noisy
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Connect with ¢(z|h)

S—

» Use mean reparametrization of LN (i, o).

0 =E[LN (p,0)] = 47 /2 =y = ert /2

=1 _ 02
= p=logn——
0_2
= LN (p,0) = LN (logn - 270)
Observation model
2
o~ o (1ogn - .0 ) ™
H
n= / (al) dh (8)

With multiple observations 71, ..., T, scale parameter ¢ > 0 assumed shared
among columns but 7 (or u) is column-specific.
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Model formulation for the i*" atmospheric column

Observation Model:

Ti Observed AOD
o2 LN Log-normal distribution
i|ni ~ LN (103 N — 95 U) i, 0 Mean and scale parameters
H %) Prior for bext
N = / o(z;|h) dh xi|h Input covariates at altitude h
0 H Atmospheric column height

P Positive link function
L Idealized heightscale parameter
f GP prior

Prior:

o(@ilh) = p(f(zilh))e "/ *
f ~ GP(m, k)
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B——

Model formulation for the i*" atmospheric column

Observation Model:

Ti Observed AOD
o2 LN Log-normal distribution
i|ni ~ LN (103 N — 95 U) i, 0 Mean and scale parameters
H %) Prior for bext
N = / o(z;|h) dh xi|h Input covariates at altitude h
0 H Atmospheric column height

Briesrs P Positive link function

L Idealized heightscale parameter
o(xilh) = (f(zin))e E f GP prior

f ~ GP(m, k)

» Objective: Infer distribution of ¢(z|h)| T, ..., T
——

T




Inference

S—

> Actually... f(z|h)|T

» Access to posterior distribution p(f|7) allows to compute
predictive mean and variance of ¢ at input x|h following

o(z|h)|r] = /¢ /(|7 df
Var(o(z|h)|7) = Elp(x|h)?|7] — E[p(z|h)|T]?

» Can be estimated with Monte-Carlo (and admits closed form for

¢ = exp)

16




Infer p(f|T)? 17

S—

Problem
il = _2trinp(0
[ piriow(e)ar
—_—
intractable
Solution

» Approximate p(f|7) (variational approximation)

» Approximation scheme allows for sparse representation which
scales to very large number of data points
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ECHAM-HAM setup
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Name Notation Dimensions
Temperature T (t, lat, lon, lev)
Predictors Pressure P (t, lat, lon, lev)
Relative humidity RH (t, lat, lon, lev)
Vertical velocity w (t, lat, lon, lev)

Response  AOD 550nm T (t, lat, lon)
Groundtruth  Extinction coefficient 533nm bext (t, lat, lon, lev)

Table 1: Gridded variables from ECHAM-HAM simulation data. The grid
includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon)
and 31 vertical pressure levels (lev). Our objective is to vertically
disaggregate the response 7 using the vertically resolved predictors

(T, P,RH,w) and spatiotemporal columns locations (¢, lat, lon).

» Total of 8 x 96 x 192 = 147456 columns.




Predictors slices

E— ECHAM-HAM temperature T
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Figure 1: Vertical slices at latitude 51.29° of meteorological predictors
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Ideal slices

ECHAM-HAM 533nm extinction coefficient b
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Figure 2: Vertical slices
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Predicted slices
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Predicted
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ECHAM-HAM 533nm extinction coefficient b,

Predicted extinction coefficient posterior mean £[blt]

Predicted extinction coefficient posterior 2.5%

Predicted extinction coefficient posterior 97.5% quantile

longitude

00010
0.0008
0.0006
00004
0.0002

0.0000

0.0010
00008
000067
00004
0.0002

00000

00010
00008
00006,
00004
00002

0.0000

00010

0.0008

00006 T

00004

00002

0.0000

23

I 4
LTISULC . VEILICal SHCCs al Iatltude -U.Jo Ol predictied prolics



Predicted slices

ECHAM-HAM 533nm extinction coefficient b,

Predicted extinction coefficient posterior mean E[b,It]

Predicted extinction coefficient posterior 2.5%

Predicted extinction coe:

Fioure B- Vertical

longitude

slices at latitnde 38 2°

of predicted profiles

NS L EEaS 2aaa s 2 2aaa s e

00004

00003

00002 &

00001

0.0004
00003

00002 &

00001

0.0004

00003

00002 &

00001

0.0004

00003

00002 &

00001

24




Predicted slices 25

S—

Table 2: Scores of our method (Our) compared to an idealized exponential
baseline (Ideal)

Region Method RMSE (10°)  Corr (%) Bias (107%) Bias98 (107°)
Entire Our  3.2940.02  70.940.4 -0.167+0.105 -0.646+0.151
column Ideal 4.10 51.2 -2.40 -4.08
Boundary Our  6.06+0.03  69.840.5  -1.254045  -4.64+0.32
ayer Ideal 7.55 53.6 1129 A1L7
Region Method ~ ELBO  Calib95 (%)  ICI (10°2)
Entire Our 13.140.1  94.940.1  5.2940.59
o Ideal — 13.1 96.0 5.05
Boundary Our 10.6+0.1 988401  8.27+0.29
Ideal 10.2 93.5 19.1

layer




Entire column Boundary layer
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Figure 6: Density plots of groundtruth extinction coefficient values against
predicted posterior mean extinction coefficient; Left: entire column;
Right: boundary layer only
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Conclusion

S—

Insights

» Possible to reconstruct realistic vertical extinction of aerosol with
sound uncertainty quantification using AOD and readily available
meteorological predictors

» Method is simple, computationally efficient, makes assumptions
explicit and as such grants control and intepretability

» Can benefit aerosol satellite products, leading to more accurate priors

over aerosol vertical profiles

Limitations and Directions

» Can only capture extinction due to aerosol swelling (missing mass
concentration, particle size and radiative properties extinction which
would require additional predictors harder to obtain)

» Methodological extensions (use multiple wavelengths, allow unmatched
data setting)

» Different use case: investigation on aerosol mode/species contribution
to extinction using model data only
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Code and Data
https://github.com/shahineb/aodisaggregation
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