AODisaggregation: toward global aerosol vertical profiles

Shahine Bouabid Duncan Watson-Parris Sofija Stefanović Athanasios Nenes Dino Sejdinovic

Design of a prior over $b_{\rm ext}$

Connecting $\varphi(x|h)$ to observations

Experiments

Conclusion

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing
- ▶ Uncertainty in present-day forcing due (in part) to difficulty to get informative measurements of aerosol at global scale

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing
- ► Uncertainty in present-day forcing due (in part) to difficulty to get informative measurements of aerosol at global scale → best we can do is AOD.

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing
- ► Uncertainty in present-day forcing due (in part) to difficulty to get informative measurements of aerosol at global scale → best we can do is AOD.
- ► AOD is a 2D quantity which does not inform about vertical distribution of aerosols.

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing
- ► Uncertainty in present-day forcing due (in part) to difficulty to get informative measurements of aerosol at global scale → best we can do is AOD.
- ► AOD is a 2D quantity which does not inform about vertical distribution of aerosols.
- Vertical distribution of aerosols changes magnitude and even sign of the forcing.

▶ Uncertainty in magnitude of forcing due to ACIs comes from:

- 1. Uncertainty in estimation of pre-industrial forcing
- 2. Uncertainty in estimation of present day forcing
- ► Uncertainty in present-day forcing due (in part) to difficulty to get informative measurements of aerosol at global scale → best we can do is AOD.
- ► AOD is a 2D quantity which does not inform about vertical distribution of aerosols.
- Vertical distribution of aerosols changes magnitude and even sign of the forcing.

Objective

Try to reconstruct aerosol vertical profiles using AOD

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set bags. Malaria incidence rate λ_i^a is per 1000 people. Left, Middle: $\log(\hat{\lambda}_i^a)$, with constant model (Left), and VBAgg-Obj-Sq (tuned on \mathcal{L}_1^s) (Middle). Right: Standard deviation of the posterior v in (\ref{P}) with VBAgg-Obj-Sq.

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set bags. Malaria incidence rate λ_i^a is per 1000 people. Left, Middle: $\log(\hat{\lambda}_i^a)$, with constant model (Left), and VBAgg-Obj-Sq (tuned on \mathcal{L}_1^s) (Middle). Right: Standard deviation of the posterior v in (\ref{P}) with VBAgg-Obj-Sq.

$$rate_{region} = Aggregate_{region} \left\{ rate_{fine-grid}(x_{fine-grid}) \right\}$$

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set bags. Malaria incidence rate λ_i^a is per 1000 people. Left, Middle: $\log(\hat{\lambda}_i^a)$, with constant model (Left), and VBAgg-Obj-Sq (tuned on \mathcal{L}_1^s) (Middle). Right: Standard deviation of the posterior v in (\ref{P}) with VBAgg-Obj-Sq.

$$rate_{region} = Aggregate_{region} \left\{ rate_{fine-grid}(x_{fine-grid}) \right\}$$

• Observations: rate_{region} and $x_{\text{fine-grid}}$

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set bags. Malaria incidence rate λ_i^a is per 1000 people. Left, Middle: $\log(\hat{\lambda}_i^a)$, with constant model (Left), and VBAgg-Obj-Sq (tuned on \mathcal{L}_1^s) (Middle). Right: Standard deviation of the posterior v in (\ref{P}) with VBAgg-Obj-Sq.

$$rate_{region} = Aggregate_{region} \left\{ rate_{fine-grid}(x_{fine-grid}) \right\}$$

- Observations: rate_{region} and $x_{\text{fine-grid}}$
- ▶ Goal: Infer rate_{fine-grid} as a function of $x_{\text{fine-grid}}$

Disaggregating along a 3rd dimension?

$$au_{
m column} = {
m Aggregate}_{
m column} \left\{ b_{
m ext}
ight\} = \int_0^{-} b_{
m ext}(h) \, {
m d}h$$

Disaggregating along a 3rd dimension?

- Observations: τ_{column} and x_{3D}
- Goal: Infer b_{ext} as a function of x_{3D}

► Use simple, readily available predictors such as pressure, temperature, humidity → reanalysis data.

For example, for a given altitude h we can take

$$x = (t, \text{lat}, \text{lon}, P, T, \text{RH}) \tag{1}$$

► Use simple, readily available predictors such as pressure, temperature, humidity → reanalysis data.

For example, for a given altitude h we can take

$$x = (t, \text{lat}, \text{lon}, P, T, \text{RH}) \tag{1}$$

Objective

Using observations of AOD and vertically-resolved meteorological predictors, we want to estimate aerosol extinction profiles.

Design of a prior over b_{ext}

• Idealized profiles assumed in remote sensing products $b_{\text{ext}}(h) \propto e^{-h/L}$.

• Idealized profiles assumed in remote sensing products $b_{\rm ext}(h) \propto e^{-h/L}$.

▶ Rough approximation but captures a key structure: most aerosol lie in *boundary layer* (< 2 km)</p> ▶ Propose to weight the idealized exponential profile with a positive weight function w(x|h) > 0

$$\varphi(x|h) = w(x|h)e^{-h/L} \tag{2}$$

▶ Propose to weight the idealized exponential profile with a positive weight function w(x|h) > 0

$$\varphi(x|h) = w(x|h)e^{-h/L} \tag{2}$$

 Capture finer details of variability putting more mass where meteorological predictors suggest higher aerosol loading ▶ Propose to weight the idealized exponential profile with a positive weight function w(x|h) > 0

$$\varphi(x|h) = w(x|h)e^{-h/L} \tag{2}$$

➤ Capture finer details of variability putting more mass where meteorological predictors suggest higher aerosol loading

Expect relationship between x|h and $b_{\text{ext}}(h)$ to be non-trivial and highly non-linear \Rightarrow learn the weighting w(x|h)

 \blacktriangleright Lack of knowledge about influence of meteorological variables \rightarrow epistemic uncertainty

- \blacktriangleright Lack of knowledge about influence of meteorological variables \rightarrow epistemic uncertainty
- Reflect this with Bayesian design of w(x|h)

$$w(x|h) = \psi(f(x|h)) \tag{3}$$

$$f \sim \operatorname{GP}(m, k) \tag{4}$$

$$\psi > 0 \tag{5}$$

- \blacktriangleright Lack of knowledge about influence of meteorological variables \rightarrow epistemic uncertainty
- Reflect this with Bayesian design of w(x|h)

$$w(x|h) = \psi(f(x|h)) \tag{3}$$

$$f \sim \operatorname{GP}(m,k)$$
 (4)

$$\psi > 0 \tag{5}$$

- Simple choice $\psi = \exp$
- ▶ $\psi \circ f$ describes expressive range of probability distribution over complex positive functions
- Remains interpretable (kernel user-specified determines covariance and functional smoothness)

Connecting $\varphi(x|h)$ to observations

We observe AOD τ → ideally we want exactly τ = ∫₀^H φ(x|h) dh
 Unrealistic because observations are likely noisy

We observe AOD τ → ideally we want exactly τ = ∫₀^H φ(x|h) dh
 Unrealistic because observations are likely noisy

We observe AOD τ → ideally we want exactly τ = ∫₀^H φ(x|h) dh
 Unrealistic because observations are likely noisy

 $\tau | \mu, \sigma \sim \mathcal{LN}(\mu, \sigma) \tag{6}$

Connect with $\varphi(x|h)$

Connect with $\varphi(x|h)$

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$

Connect with $\varphi(x|h)$

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$
$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$

Connect with $\varphi(x|h)$

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$
$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$
$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

Connect with $\varphi(x|h)$

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$
$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$
$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

Connect with $\varphi(x|h)$

$$\eta = \mathbb{E}[\mathcal{LN}(\mu, \sigma)] = e^{\mu + \sigma^2/2} \Rightarrow \eta = e^{\mu + \sigma^2/2}$$
$$\Rightarrow \mu = \log \eta - \frac{\sigma^2}{2}$$
$$\Rightarrow \mathcal{LN}(\mu, \sigma) = \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right)$$

Observation model

$$\tau | \eta \sim \mathcal{LN}\left(\log \eta - \frac{\sigma^2}{2}, \sigma\right) \tag{7}$$
$$\eta = \int_0^H \varphi(x|h) \,\mathrm{d}h \tag{8}$$

With multiple observations $\tau_1, ..., \tau_n$, scale parameter $\sigma > 0$ assumed shared among columns but η (or μ) is column-specific.

Model formulation for the i^{th} atmospheric column

Observation Model: Observed AOD au_i $\mathcal{LN} \\ \eta_i, \sigma$ $au_i | \eta_i \sim \mathcal{LN}\left(\log \eta_i - rac{\sigma^2}{2}, \sigma
ight)$ Log-normal distribution Mean and scale parameters $\eta_i = \int_0^H \varphi(x_i|h) \,\mathrm{d}h \qquad \begin{array}{c} \varphi \\ x_i|h \\ H \end{array}$ Prior for b_{ext} Input covariates at altitude hAtmospheric column height Positive link function ψ **Prior:** LIdealized heightscale parameter $\varphi(x_i|h) = \psi(f(x_i|h))e^{-h/L}$ f GP prior $f \sim \operatorname{GP}(m, k)$

Model formulation for the i^{th} atmospheric column

Observation Model:	$ au_i$	Observed AOD
σ^2	LN	Log-normal distribution
$\tau_i \eta_i \sim \mathcal{LN} \left(\log \eta_i - \frac{1}{2}, \sigma \right)$	η_i, σ	Mean and scale parameters
с <i>Н</i>	φ	Prior for b_{ext}
$\eta_i = \int \varphi(x_i h) \mathrm{d}h$	$x_i h$	Input covariates at altitude h
J_0	H	Atmospheric column height
Prior:	ψ	Positive link function
	L	Idealized heightscale parameter
$\varphi(x_i h) = \psi(f(x_i h))e^{-h/L}$	f	GP prior
$f \sim \operatorname{GP}(m,k)$		

▶ **Objective:** Infer distribution of $\varphi(x|h)|\underbrace{\tau_1,...,\tau_n}$

- \blacktriangleright Actually... $f(x|h)|\boldsymbol{\tau}$
- Access to posterior distribution $p(\mathbf{f}|\boldsymbol{\tau})$ allows to compute predictive mean and variance of φ at input x|h following

$$\mathbb{E}[\varphi(x|h)|\boldsymbol{\tau}] = \int \psi(\mathbf{f})e^{-h/L}p(\mathbf{f}|\boldsymbol{\tau}) \,\mathrm{df}$$
$$\operatorname{Var}(\varphi(x|h)|\boldsymbol{\tau}) = \mathbb{E}[\varphi(x|h)^2|\boldsymbol{\tau}] - \mathbb{E}[\varphi(x|h)|\boldsymbol{\tau}]^2$$

► Can be estimated with Monte-Carlo (and admits closed form for $\psi = \exp$)

Problem

$$p(\mathbf{f}|\boldsymbol{\tau}) = \frac{p(\boldsymbol{\tau}|\mathbf{f})p(\mathbf{f})}{\underbrace{\int p(\boldsymbol{\tau}|\mathbf{f})p(\mathbf{f}) \, \mathrm{d}\mathbf{f}}_{\text{intractable}}}$$

Solution

- Approximate $p(\mathbf{f}|\boldsymbol{\tau})$ (variational approximation)
- ▶ Approximation scheme allows for sparse representation which scales to very large number of data points

Experiments

	Name	Notation	Dimensions
Predictors	Temperature Pressure Relative humidity Vertical velocity	$T P RH \omega$	$ \begin{array}{l} (t, \mathrm{lat}, \mathrm{lon}, \mathrm{lev}) \\ (t, \mathrm{lat}, \mathrm{lon}, \mathrm{lev}) \\ (t, \mathrm{lat}, \mathrm{lon}, \mathrm{lev}) \\ (t, \mathrm{lat}, \mathrm{lon}, \mathrm{lev}) \end{array} $
Response	AOD 550nm	au	(t, lat, lon)
Groundtruth	Extinction coefficient 533nm	b_{ext}	(t, lat, lon, lev)

Table 1: Gridded variables from ECHAM-HAM simulation data. The grid includes 8 time steps (t), 96 latitude levels (lat), 192 longitude levels (lon) and 31 vertical pressure levels (lev). Our objective is to vertically disaggregate the response τ using the vertically resolved predictors $(T, P, \text{RH}, \omega)$ and spatiotemporal columns locations (t, lat, lon).

▶ Total of $8 \times 96 \times 192 = 147456$ columns.

Predictors slices

Figure 1: Vertical slices at latitude 51.29° of meteorological predictors

Ideal slices

ECHAM-HAM 533nm extinction coefficient best

Figure 2: Vertical slices at latitude 51.29° of idealized profiles

Predicted slices

Figure 3: Vertical slices at latitude 51.20° of predicted profiles

Predicted slices

Predicted slices

Figure 5: Vertical slices at latitude -38.2° of predicted profiles

Table 2: Scores of our method (Our) compared to an idealized exponential baseline (Ideal)

Region	l	Method	RMSE	RMSE (10^{-5})		Corr (%)		Bias (10^{-6})		Bias98 (10^{-5})	
Entire columr	e 1	Our Ideal	3.29 ±4.1	±0.02 10	70	.9 ±0.4 51.2	-0.16 -2	7 ±0.105 2.40	-0.6 4	16 ±0.151 −4.08	
Bound laye	ary r	Our Ideal	6.06 ±7.5	±0.03 55	69	.8 ±0.5 53.6	-1.2	5 ±0.45 12.9	-4.6	34 ±0.32 -11.7	
	Reg En:	ion] tire	Method Our Ideal	ELB 13.1± 13.1	O 0.1	Calib9 94.9:	5 (%) ±0.1	ICI (10^{-2}) 5.29 ± 0.5	²) 59		
	_column Boundary layer		Our Ideal	10.6 ± 10.2	0.1	98.8±	=0.1 . 5	8.27±0.2 19.1	29		

Figure 6: Density plots of groundtruth extinction coefficient values against predicted posterior mean extinction coefficient; Left: entire column; Right: boundary layer only

Insights

 Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and intepretability

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and intepretability
- Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and intepretability
- Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

▶ Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and intepretability
- Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

- ► Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)
- Methodological extensions (use multiple wavelengths, allow unmatched data setting)

Insights

- Possible to reconstruct realistic vertical extinction of aerosol with sound uncertainty quantification using AOD and readily available meteorological predictors
- ▶ Method is simple, computationally efficient, makes assumptions explicit and as such grants control and intepretability
- Can benefit aerosol satellite products, leading to more accurate priors over aerosol vertical profiles

Limitations and Directions

- ► Can only capture extinction due to aerosol swelling (missing mass concentration, particle size and radiative properties extinction which would require additional predictors harder to obtain)
- Methodological extensions (use multiple wavelengths, allow unmatched data setting)
- Different use case: investigation on aerosol mode/species contribution to extinction using model data only

Preprint

Shahine Bouabid, Duncan Watson-Parris, Sofija Stefanović, Athanasios Nenes, Dino Sejdinovic. AODisaggregation: toward global aerosol vertical profiles arXiv preprint arXiv:2205.04296.

Code and Data

https://github.com/shahineb/aodisaggregation